CLOUD COMPUTING
UNIT-3

Distributed Storage

feedoatk [correckions: vibha @ pesu.pes. edw VIBHA MASTI

Sorage

Hierarchy of {iles, foldere
" Rhecets via ?a-\'k
- Limived metfodata

* Chunks of e,ven\‘a sined volumes

* tach blotk: wnigue \D
vader\@na ctovacye Software reastembles Aok from
blotlt when requected

© Lovpe amountc of dadn,

- Low metadato

© expentive

* Har Structure
* Mevrodedo icv\por’ran’i' C2 \evels)
Unigue \D

Cloud Stuvope hrrhiteduce

| Vser accece louaer

2 Doto Service \oupel
3. dato mam@emu\\—
4 Dot s\'ﬂa\ﬁc

(D Fle Suste
D fid into file

D) Lopjical Volume Mavl\lgo\er (LVM)
- Layer bM F& and ditk drives

. Ihome Idata
File Systems (extd) 0
LVM
Logical Volume (LV) [L0l B0l R S /dev/primary_ve/data_lv
Volume Groups (VG) primary_vg

Physical Volumes | /devisdbt | | /dev/sdb2 /devisdct | | /devisdc2

Partitions | /dev/sdbi [dev/sdb2 [dev/sdc1 [dev/sdc2

|
({lii) Win / Victua) Provisigning

. S‘l'wio\e. evceived b Ja?p > oh%,sim
6 Q)

(0

shor ' '

Ca'\'e(ét) ries of S-(—or%g Virtualization

i E. _ ! J ! !\ I.
© Kostrattim of F¢ tv ap
© Single \ogical S over diskributed F¢

* Distributed FS - managing metadata

¥ Centvalized metodata server
% dedicated server foxy MO
> (ot-oated &ync
L botileneck
O tcale well o \arge £ies
O Luttre
Lustre
© 3 components — 0sSec Wk etive files tm 08T,
Single. MOT ¥hak stoves MD en MDes, Luctve
C\iewre

+ Reoad fundhiomi N

% Digtributed data § metadata
L greater c.omp\exi\-a
L Hlutker F¢

Glugtee FS

A tomponents — client & server
Secver “cdugters" all physical stompe Servery
and exports tombined dituspace as GFS

- Stovage brick

* Trowg\otor

2. Blote Virtualization
si%\e lo&'\m\ sk
© 2 \evels

¥ Host-PBased
o LVM

3 age. Device Llevel
wal volumes over phusical stovage
B RAID

L Logjical Units CLUNC

% Networl Based
L> MOost common
O Wirhin network LOV\V\EC‘H'? hosts ¢ Storage
L Swikch or appliance base

/7 \
in-band our-of-band

3. Oh\e,d' Victualization

Flar namespace

© Fle t gpstem MD + custom ™MD

- USe REST APIs

© Crifieal togks
* dota placement
* au\-omm\a management tackg
D\M‘MD‘\'\‘\"&
¥ replication
% erOsuve codina

Amozon $2

Buckets contain objects
© Replicated in many geo loce ColedO
Keys : <opt-dir path> / <olj-name?
- Securit
% Accest ontrol {o obye
% Audit logs
Data protection
% Replication
© survive L repica failuves
L) RRS survives | replica failure

O Consisrenwy
3% Rea'\ons
L> 020 area
G lepal, availability reasong
O bucket ﬂegion

¥ Versioni
W full histery

© Larpe objects - malki part uploads

OpenStack Switt

© Swift partitions : locatins for data from available
s‘tomge

© Account: user in sturage system

© (ontoiners: where accounts created, stured (namespaces)

* Olbject

" Rindy: maps partition o phusical locatims

index

{0 §

\Le%

RTITIONING

stoves

@

ven

)

\‘)om-e.ms

ymeny
| }

(4t

U:qy\e

s

all

odes “\n

pa

ralle|

Stakxic
Lt tednnigues

| ¥eu Ranpe
. Disadvtl?m\'aﬁe: data accest can lead +o hotspots

L. Schema-Rased
Related rowse Togethec

3. braph
+ Workload vased
-+ No rePar\'IﬁmiAQ

3. Hash
y Gven\uo Aittributes rows
© Conmnot do efficient range quecries
L natenated ndex
Distributed hasmwa
. ke\f\ashing
- (ownsicrent V\ac\n'm% < \ndependent of F servers

Consider the @ as hash outputs of partitions
All hash values linearly fit on the circle with an anglg

Lets consider the nodes/servers using say their
names are also hashed with their names and
placed on the same circle as [l shown

. sewv\o\aqg ndex
x Doument-ooged Paﬂiﬁmina
% Term-oosed partitiming

ggbakang‘gg

. hagh mod N

Rangye of hathes to o server
+ Eexpentive Ao rewath

&. Fixed no. of partitions
© AsSignment of part o node Unanpes Csine of part thangps)

2. D\ot\am'\c

: \Le% fange partidioning
" SpUF & meme parkhivd dgnamically

4. Pardition ProPﬁh'mo\\\b o Nodes
- Fixed no. of pacts per node
No. of ?af'\'s ol nodes
Hasth

Request Routingy

Service diswcho problem
" hpproach #1

% tlients contact any node CRR load balancer)

* it part not present, forwarde +o appropriate node
- Approach #2

% 0\ reqs to mu\'iv\@ Her

¥ pactitim-aware Toad balancer

A?proac\n #2
% clienss oaware of paris

- Approach #U
¥ Zookeeper
¥ nodet e trey n 2K
& voutina Yier ey ciieny cown Subscribe Yo 2k
% Zk nohfies RT of updates

* Writes need 40 \oe PfOC.ESCQd by every veplica
. Naori\'\/\ms
% &\‘ng\e—\ew\er

¥ Multi-Leader
¥ ader\ess

) Sing\e leader

* One replica s leoder
P\ writes xo \eader
Leader tends repiication log *to followers
to\lowere ptx@wm virites in ocder

- Pollowers: o\r\\\A read queries

* SlAV\dI\TOV\D\AS
W Leader wWovk fov follower +o tonfirm befure

ro.vn‘%in% tnccess

¥ Atyndnaconous

LG No waly

1. Stotement -based

- Write -Ahead Logs

3. thangye Dot Ctapture | Logital Lop
&. Trigger baced

(o) follower failuce
* (akth uwp vrecovery -loog

© Pollower requucte dotan chanpes from leader (since
foilure)

(o) Leader failure
- Failover
Onoose new l\esder and newnkawe elientg
* Manual or awtomadtic

© Replication |
hpp May read outdared info from agyne followers
* Apparent inconSictencies — eventual consisrenc
Delay between wWrite to leader 0nd replication
on follower
© Ldenhificatimn: cead your own wniee
 Possible Solukiowns
Read critical dato. from leader
* Moniter lag ¢ prevent gueries on follower with
larpe \aa
¥ Uient latk weite kimettowip
¥ Monotonle reads
* (ongittent prefix reads

(i) Mulh- leader
© vsefu\ fov
* Multi dotacenter operatim
% Uients with offline operntion
% (oWlaborative edii—ina
write onflictg
¥ Conflict avoidance: writec for parteular recovd
tavough same leader
¥ (,onver%iv\% owards consittent ctate : cadh write
unigue D
% Cugtom conflict resolution

(i) Leaderless
hl nodeC accepr reads ¢ writeg
* Write Success it Atked by quorum of k. replicac
Rend swccess if qmorum of w reade ogree om a

volle

* Write
— dient broadcagts req, +o all replicag
- wWoits foy certain no. of ACKe
— Success if AlKed by our of n replicas

¥ Read
- dient Contacte all rep\icas
— suweeess if € oowr of N reads agree on o value

"L ot cead § wreite may differ

Read operation in Leaderless replication

Result(A = 2)

Client Coordinator Node_1 Node_2 Node_3
| | | | |
| | | | |
I GET A | | | |
| > | | |
| | | | |
I | GET A »! I I
| | | | |
I | GET Al | |
| I T > I
| | | | |
| | |GET A | »l
| | | | |
I I A=1(version_1) | | |
r 1			
[L			
	< A = 2 (Version_2)		
I A=2 (Version_2)			
I () T — t i			
I			
g J	!		
I			

Read repair: dient sees owrdated value in replica
omd updates with new volue

Concurrent writes:
% Lotk write wing
¥ Version numberg

CONSISTENCY MODELS

- Eventual cowsistency
ttop writing, wait for uncpecified lenpth of time,
evenrwolly oWl read reqe retumn tame value
© Weak guarantee

2. Sequential consistenc
AUl procetses see tame erder of oll wemevy access

operatimg
ONCE
Instr\

-Instr 1 -Instr 2 -Instr1| ~-Instrl

-Instr 2 -Instr 3 -Instr2 | -lInstr2

-Instr 3 -Instr3| ~-Instr3
-Instr 1 -Instr 1
-Instr 1 -Instr 1
-Instr 2 -Instr 3
-Instr 1 -Instr 1
-Instr 2 -Instr 2
-Instr 3 MEMORY -Instr 3
-Instr 1 -Instr 1
-Instr 3 -Instr 2
-Instr 2 -Instr 2
-Instr 3 -Instr 3
-Instr 2 -Instr 2
-Instr 3 -Instr 3

3. (autal cownsistenc
2 events caucally related if one can influence 4ne
other
© wealer Hhan Sequential
all procetses observe wausally -velated operations in
0. tommon adrder
If sequentially contittent, alto caucally

k. Pipelined RAM CPRAMY Cowsistency /FIFO
- ANl writes Pe,r(-‘urmm by Singje procese seen by all
other processes in the order in vaWich they were

pecformed

5 Strict/ Strom Covm‘ﬂ-enc&/ Linearizabl l\‘+3
* Kppear 0% O sing\e-wm Sysrem
Aromic wontistent
Read puaranteed to see most recent write
thede Ximings of all reqt and rec and chew if they
wn be arravped into o vald Sequential svder

CAP Theovrem
- contictenc
: Ami\a\o‘nu?
Par¥i¥ion “olevawnce

Lannot Wave A\ 2 in & dittributed tystem with
dato replication

Eaz DS of 2 nodes s+mring value of X. Nerwori
partiion wappene. Either C no R or A (no €)

N User
OF @
& % .
& ?

Node A

Node B
/\

Toodeoffs

1. Availability and Partition-Tolerant (Compromised Consistency): Say you have two nodes and the link
between the two is severed. Since both nodes are up, you can design the system to accept requests on
each of the nodes, which will make the system available despite the network being partitioned.
However, each node will issue its own results, so by providing high availability and partition tolerance
you’ll compromise consistency.

2. Consistent and Partition-Tolerant (Compromised Availability): Say you have three nodes and one
node loses its link with the other two. You can create a rule that, a result will be returned only when a
majority of the nodes agree. In-spite of having a partition, the system will return a consistent result, but
since the separated node won’t be able to reach consensus, it won’t be available even though it’s up.

3. Consistent and Available (Compromised on a Partition-Tolerance): Although, a system can be

both consistent and available, but it may have to block on a partition.

Consistency

CA Category
Network problem might
stop the system.
Ex: RDBMS (Oracle, QL Server, MySQL)

CP Category
There is a risk of some data
becoming unavailable.
Ex: MongoDB, Hbase, Memcache
BigTable , Redis

Pick two

Partition
Tolerance

Availability
AP Category

Clients may read inconsistent data
Ex: Cassandra, RIAK, CouchDB

O\STRIBUTE D TRANCAC IONS

ee%‘m
* €Ea Chry ‘o commiy)
* Koort Ckild)

* &C\D
“ Atomic
L Congittent
L \solated) Serializabole
> purable

Teansach ong

l. Nested transattiong
Sub-frans may commit, parent may fail

folutiom: private warlespace
Commit: pv copy dicplaces parent’s

a- Dittribured tyawcackiong
+ eodn node has
% local troansochion manager

% tromtatrion Coordinodor Cnominated Hrom LTWMS)

Comwmit Protocols
©ensure okomici
Commiy or all Sites &% obert ot o\l Siteg

\. Pwhase 4 S
oovdinatey writeg ‘\:repare_T m its logs
(oordinatey Sendg ‘ prepare T Yo a\ Sireg

© If site feady to commit, emrert pre-commitied
state
Site places (readyT> on s \ons
Site Sends ‘reo\d% T> 4o \ocal Coovdinatuy
Once site in pre-tommitted state, cannot abert
unless told +to oy coord

+ TF site wot ready Yo commit, Writes ‘don’t
commit T? 40 local o
- Sends ‘don't commit T’ 4o woord

oord waits fox all nodes +o reply

A Phace 2
© T all nodes tay ‘ceady T°, decidet to ommit

- (oord \ogys ‘ommit T and Sends

T one or were tap 'don't commit T°, loge
‘abevk T> and sends

+ Site elther commirc and releages locus ,lo%(n ‘tommit
T, o Oberie nnd veleates locks, looping ‘abwt T°
Conted M veceived westace)

write data

Coordinator % .=l

Database 1 @

Database2 | | --------------

—

»
3

s = locks held by transaction : phase 1 phase 2

