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Toodeoffs

1. Availability and Partition-Tolerant (Compromised Consistency): Say you have two nodes and the link
between the two is severed. Since both nodes are up, you can design the system to accept requests on
each of the nodes, which will make the system available despite the network being partitioned.
However, each node will issue its own results, so by providing high availability and partition tolerance
you’ll compromise consistency.

2. Consistent and Partition-Tolerant (Compromised Availability): Say you have three nodes and one
node loses its link with the other two. You can create a rule that, a result will be returned only when a
majority of the nodes agree. In-spite of having a partition, the system will return a consistent result, but
since the separated node won’t be able to reach consensus, it won’t be available even though it’s up.

3. Consistent and Available (Compromised on a Partition-Tolerance): Although, a system can be

both consistent and available, but it may have to block on a partition.

Consistency

CA Category
Network problem might
stop the system.
Ex: RDBMS (Oracle, QL Server, MySQL)

CP Category
There is a risk of some data
becoming unavailable.
Ex: MongoDB, Hbase, Memcache
BigTable , Redis

Pick two

Partition
Tolerance

Availability
AP Category

Clients may read inconsistent data
Ex: Cassandra, RIAK, CouchDB
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