
Distributed Storage

CLOUD COMPUTING

UNIT -3

feedback/corrections : vibha@pesu.pes.edu VIBHA MASTI






















































































































































Storage

1 File
Hierarchy of files folders
Access via path
Limited metadata

2 Block
chunks of evenly sized volumes
Each block unique ID
underlying storage software reassembles data from
blocks when requested
Large amounts of data
Low metadata
Expensive

3 Object
Flat structure
Metadata important C2 levels
Unique ID

cloud storage Architecture

1 user access layer
2 Data service layer
3 Data management
4 Data storage



CloudStorageVirtualizationEnablers

4 File Systems
Data grouped into files
Network FS

Ii Logical Volume Manager CLUM
Layer btw Fs and disk drives

iii Thin Virtual Provisioning
storage perceived by app physically allocated
storage



categories of storage virtualization

1 File Level Virtualization
Abstraction of Fs to app
Single logical Fs over distributed Fs
Distributed Fs managing metadata

centralized metadata server
dedicated server for MD

4 Lockbased sync
bottleneck
scale well for large files
Lustre

Lustre
3 components Osses that store files on Osts
single MDT that stores MD on Moses Lustre
clients
Read functioning

Distributed data g metadata
greater complexity
Gluster FS

luster Fs
2 components client a server
Server clusters all physical storage servers
and exports combined diskspace as Gfs
Storage brick
Translator



2 Block Virtualization
Single logical disk
3 levels

Host Based
LUM

Storage Device Level
virtual volumes over physical storage
RAID
Logical Units CLUNS

NetworkBased
Most common
Within network connecting hosts a storage
switch or appliance based

in band out of band

3 Object Virtualization
Flat namespace
Filet systemMD custom MD
Use REST APIs
critical tasks
data placement
automating management tasks

Durability
replication
erasure coding



Amazon S3
Buckets contain objects
Replicated in manygeo toes objects
keys Copt dir path obj name
security
Access control to obj's
Audit logs

Data protection
Replication
survive 2 replica failures
RRS survives I replica failure
Consistency

Regions
geo area
legal availability reasons
bucket region

versioning
full history

Large objects multi part uploads

Openstack Swift
Swift partitions locations for data from available
storage
Account user in storage system
containers where accounts created stored namespaces
Object
Ringmaps partition to physical locations



DynamoDB
NoSQL key value ANS
Tables created in advance
Primary hey secondary index
Item level consistency
No joins
Primarykeys
Partitionhey
Partition key and sort key

PARTITIONING
Partition datastores
skewed hot spot
4approaches

1 vertical Partitioning
column
No 2 critical columns together

ii workload driven
Data access patterns

iii Random Assignment
Disadvantage query all nodes in parallel



in Horizontal
Static

i 4 techniques

1 keyRange
Disadvantage data access can lead to hotspots

2 SchemaBased
Related rows together

3 Graph
workload based
No repartitioning

3 Hash
Evenly distributes rows
cannot do efficient range queries
concatenated index

Distributed hashing
rehashing
consistent hashing independentof servers



Secondary index
Document based partitioning local index
Term based partitioning global index

Rebalancing

1 hashmod N

Range of hashes to a server

Expensive to rehash

2 Fixed no of partitions
Assignment of part to node changes size of partchanges

3 Dynamic
keyrangepartitioning
Split a merge partitions dynamically

4 Partition Proportionally to Nodes
Fixed no of parts per node
No of parts a nodes
Hash

Request Routing
Service discovery problem
Approach I
clients contact any node CRR load balancer
if part not present forwards to appropriate node

Approach 2
all regs to routing tier
partition aware load balancer



Approach 3
clients aware of parts

Approach 4
zookeeper
nodes register in 2K

routing tier or client can subscribe to 2K
2k notifiesRT of updates

Replication

writes need to be processed by every replica
Algorithms
single leader
Sync
Async

Multi Leader
Leaderless

i single leader
one replica is leader
All writes to leader
Leader sends replication log to followers
Followers perform writes in order
Followers only read queries
Synchronous
Leader waits for follower to confirm before

reporting success
Asynchronous
4 No wait



Implementation of Replication Logs
1 Statement based
2 Write Ahead Logs
3 ChangeData capture Logical log
4 Triggerbased

Potential Issues

a Follower failure
catch up recovery logs
Follower requests data changes from leader since
failure

b Leader failure
Failover
choose new leader and reconfigure clients
Manual or automatic

6 Replication lag
Appmay read outdated info from async followers
Apparent inconsistencies eventual consistency
Delay between write to leader and replication
on follower
Identification read your own writes
Possible solutions
Read critical data from leader
Monitor lagg prevent queries on follower with
large lag
Client last write timestamp
Monotonic reads
consistent prefix reads



Cii Multi leader
Useful for
Multi datacenter operation
Clients with offline operation
Collaborative editing

write conflicts
conflict avoidance writes for particular record
through same leader
Converging towards consistent state each write
unique ID
Custom conflict resolution

iii leaderless
All nodes accept reads g writes
write success if Askedby quorum of k replicas
Read success if quorum of k reads agree on a
value

Write
client broadcasts req to all replicas
waits for certain no of Acks
success if Acked by k out of n replicas

Read
client contacts all replicas
success if k out of n reads agree on a value

k for read write may differ



Read repair client sees outdated value in replica
and updates with new value

concurrent writes
Last write wins
Version numbers



CONSISTENCY MODELS

1 Eventual consistency
stop writing wait for unspecified length of time
eventually all read regs return same value
weak guarantee

2 Sequential consistency
All processes see same order of all memory access
operations

3 Causal consistency
2 events causally related if one can influence the
other
weaker than sequential
all processes observe causally related operations in
a common order
If sequentially consistent also causally



4 Pipelined RAM PRAM consistency FIFO
All writes performed by singleprocess seen by all
other processes in the order in which they were
performed

5 Strict strong consistency Linearizability
Appear as a single copy system
Atomic consistency
read guaranteed to see most recent write
check timings of all regs and res and check if they
can be arranged into a valid sequential order

CAP theorem

consistency same copies of item on all nodes

Availability call workingnodes return valid response
Partition tolerance re route on fail

cannot have all 3 in a distributed system with
data replication

Eg Ds of 2 nodes storing value of X Network
partition happens Either C no A or A no C



Tradeoffs



DISTRIBUTEDTRANSACTIONS

Begin
End try to commit
Abort Chill

ACID
Atomic
Consistent
Isolated serializable
Durable

Transactions

1 Nested transactions
sub trans may commit parent may fail
solution private workspace
commit put copy displaces parent's

2 Distributed transactions
Eachnodehas
local transaction manager
transaction coordinator nominated from LTMs

commit Protocols
ensure atomicity
commit at all sites or abort at all sites



Two Phase commit

1 Phase 1
coordinator writes prepare t on its logs
Coordinator sends prepare t to all sites

If site ready to commit enters pre committed
state
site places ready t on its logs
site sends ready t to local coordinator
once site in pre committed state cannot abort
unless told to by coord

If site not ready to commit writes don't
commit t to local log
Sends don't commit t to coord

coord waits for all nodes to reply

2 Phase 2
If all nodes say ready t decides to commit
coord logs commit t and sends

If one or more say don't commit t logs
abort t and sends

Site either commits and releases locks logging commit
t or aborts and releases locks logging about t
based on receivedmessage




